Fault-controlled fluid flow inferred from hydrothermal vents imaged in 3Dseismic reflection data, offshore NWAustralia
نویسندگان
چکیده
Fluid migration pathways in the subsurface are heavily influenced by pre-existing faults. Although studies of active fluid-escape structures can provide insights into the relationships between faults and fluid flow, they cannot fully constrain the geometry of and controls on the contemporaneous subsurface fluid flow pathways. We use 3D seismic reflection data from offshore NW Australia to map 121 ancient hydrothermal vents, likely related to magmatic activity, and a normal fault array considered to form fluid pathways. The buried vents consist of craters up to 264 m deep, which host a mound of disaggregated sedimentary material up to 518 m thick. There is a correlation between vent alignment and underlying fault traces. Seismic-stratigraphic observations and fault kinematic analyses reveal that the vents were emplaced on an intra-Tithonian seabed in response to the explosive release of fluids hosted within the fault array. We speculate that during the Late Jurassic the convexupwards morphology of the upper tip-lines of individual faults acted to channelize ascending fluids and control where fluid expulsion and vent formation occurred. This contribution highlights the usefulness of 3D seismic reflection data to constraining normal fault-controlled subsurface fluid flow.
منابع مشابه
Factors affecting fluid flow in strike–slip fault systems: coupled deformation and fluid flow modelling with application to the western Mount Isa Inlier, Australia
Deformation and focused fluid flow within a mineralized system are critical in the genesis of hydrothermal ore deposits. Dilation and integrated fluid flux due to coupled deformation and fluid flow in simple strike–slip fault geometries were examined using finite difference analysis in three dimensions. A series of generic fault bend and fault jog geometries consistent with those seen in the we...
متن کاملA serpentinite-hosted ecosystem in the Southern Mariana Forearc.
Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H(2)- and CH(4)-rich fluids and associated carbonate chimneys, as well as...
متن کاملFormation of Replacement Dolomite in the Latemar Carbonate Buildup, Dolomites, Northern Italy: Part 2. Origin of the Dolomitizing Fluid and the Amount and Duration of Fluid Flow
Replacement dolomite in the Latemar carbonate buildup developed when limestone was infiltrated by reactive fluid. Minor-element, trace-element, and oxygen and carbon isotope compositions of dolomite and precursor limestone constrain the origin of the fluid and fundamental aspects of the flow. Inferred salinity (similar to seawater); temperature (45°–85°C); Sr/Sr (0.7076–0.7079); Ca/Mg (<1.4); a...
متن کاملIdentification of Chemoautotrophic Microorganisms from a Diffuse Flow Hydrothermal Vent
At deep-sea hydrothermal vents chemolithoautotrophic microbes mediate the transfer of geothermal chemical energy to higher trophic levels. To better understand these underlying processes and the organisms catalyzing them, this research used DNA Stable Isotope Probing (SIP) combined with Catalyzed Activated Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) to identify the microo...
متن کاملHydrothermal recharge and discharge guided by basement outcrops on 0.7–3.6 Ma seafloor east of the Juan de Fuca Ridge: Observations and numerical models
[1] The nature of ridge-flank hydrothermal circulation guided by basement outcrops protruding through thick sediments is constrained on the eastern flank of the Juan de Fuca Ridge using combined bathymetric, seismic, and thermal observations and analytical and numerical calculations of coupled fluid-heat flow. Observational data near the western edge of the survey area indicate that young, cool...
متن کامل